


Determine number of protons attached to each carbon in fluorine-containing compounds by ¹³C NMR spectroscopy!

Product used: Nuclear Magnetic Resonance (NMR)

We usually use DEPT135 (Distortionless Enhancement by Polarization Transfer) experiment to analyze ¹³C multiplicity. In the case of fluorine-containing compounds, not only ¹H decoupling but also ¹⁹F decoupling is efficient. J_{CF} are larger than J_{CH} , and so ¹³C peaks are often affected even by long-range couplings. In such instances, we can achieve the maximum sensitivity and singlet signals by ¹³C measurement with simultaneous ¹H and ¹⁹F decoupling. The figures below show ¹³C and DEPT spectra of 20% 2,2,3,3tetrafluoropropanol in CDCl₃. You can see that ¹³C and DEPT spectra are simplified with ¹⁹F decoupling.

$CF_2H-CF_2-CH_2-OH$

ROYALPROBE HFX can perform these 1 H, 19 F, 13 C triple-resonance measurement, even with a standard 2-channel console!

console: JNM-ECZ500R, ROYALPROBE HFX

Copyright © 2018 JEOL Ltd.

Certain products in this brochure are controlled under the "Foreign Exchange and Foreign Trade Law" of Japan in compliance with international security export control. JEOL Ltd. must provide the Japanese Govern of Assurance" and "End-use Certificate" in order to obtain the export license needed for export from Japan. If the product to be exported is in this category, the end user will be asked to fill in these certificate forms.

